Kansas Hydrogen Hunt Seen Fueling New Energy Revolution
Startups Backed by Bill Gates Target Subterranean Clean Fuel
Bloomberg News
[Stay on top of transportation news: .]
A new Gold Rush is taking shape on a quiet stretch of Kansas prairie. There, a clutch of startups backed by the likes of Bill Gates are searching below the surface for naturally occurring hydrogen, a fuel that can generate power via climate-friendly means. Finding it in vast quantities could revolutionize a transition away from other fossil fuel-produced energy. But the hunt is clean energy wildcatting, with a real possibility of failure 鈥 and the added risk of diverting limited climate venture capital at a time when the world is seeking proven emissions-cutting technologies.
Kansas sits atop a geological quirk: The Midcontinent Rift is a subterranean scar a billion years old created when North America started to split down the middle and then stopped. Iron-rich rocks within the rift can produce hydrogen when exposed to water, pressure and heat. And records left over from several old oil exploration wells in the area decades ago show the gas is 鈥 or at least was 鈥 present.
Tantalizing hints abound that other sites around the world also house supplies of the lightest element in the universe, attracting money to the search. One company, Koloma, has raised more than $300 million, including from Bill Gates鈥 Breakthrough Energy Ventures. Mining giant Fortescue Ltd. recently spent $22 million to buy a 40% stake in Australia-based HyTerra, one of the startups looking in Kansas. All told, approximately 50 geologic hydrogen companies are in operation, including explorers, equipment makers, and oil and gas conglomerates funding research, according to BloombergNEF.
Naturally occurring hydrogen holds the potential for what Wood Mackenzie analyst Richard Hood calls a 鈥淪pindletop moment,鈥 referring to the 1901 Texas oil gusher that helped create the modern world. If it exists in commercial quantities, pumping hydrogen from the ground would be cheaper than stripping it from water using electricity and cleaner than making it from natural gas, the most common method.
鈥淣o question, there鈥檚 risk,鈥 said Bruce Nurse, co-founder of PureWave Hydrogen, which has leased sites in three Kansas counties for exploration. 鈥淏ut it鈥檚 an energy source we need to go after here in the U.S., because manufactured hydrogen is not going to cut it.鈥

(Bloomberg)
Scientists have begun earnestly attempting to determine how much hydrogen lurks under the Earth鈥檚 surface, and Geoffrey Ellis is at the forefront of that work. A research geologist for the United States Geological Survey (USGS), Ellis spent two decades researching petroleum geochemistry. About five years ago, Ellis pivoted to hydrogen when he heard about Mali.
Mali is the great origin story of the quest for geologic hydrogen, which industry refers to as 鈥渨hite鈥 and sometimes 鈥済old.鈥 In the late 1980s, residents of a village drilling for water in the West African country of Mali stumbled upon a pocket of gas. Not knowing what it was, they plugged it back up. Decades later, workers heard of this discovery and drilled a new well to uncover what they had hoped was natural gas, only to find nearly pure hydrogen.
Ellis鈥檚 group has been modeling the subsurface globally 鈥 drawing on oil and gas industry tools and methods 鈥 and his estimate is wide-ranging: anywhere from billions of tons on the conservative end to trillions of tons. Tapping even a fraction of the estimated hydrogen would meet hundreds of years of demand, Ellis said.
He ascribes the several orders of magnitude of uncertainty to the nature of the model he and his team built, based on what is known about hydrogen and better-understood resources like petroleum. The question for him 鈥 and investors and companies 鈥 isn鈥檛 whether it exists, but how much of it is accessible and able to be accumulated in large, pure quantities. The only way to know for sure is to start drilling.
鈥淵ou have to operate in uncertainty,鈥 said Koloma鈥檚 Chief Business Officer Paul Harraka.
Want more news? Listen to today's daily briefing above or go here for more info
To maximize their chances of success, prospectors are leaning on paper records in dusty archives and oil and gas documents that have mentioned accidental hydrogen discoveries. But they鈥檙e also using technology like sophisticated machine learning to identify what are known as 鈥渇airy circles鈥 in satellite images. These circular depressions on the Earth鈥檚 surface sometimes emit hydrogen and could point to subsurface reservoirs.
Viacheslav Zgonnik is the co-founder and former CEO of Denver-based Natural Hydrogen Energy, which went prospecting in 2023 near Geneva, Neb. Drilling more than 11,000 feet into the ground, they found hydrogen, though Zgonnik declined to say how much. But he left the company this year to create a startup to provide software to companies looking for hydrogen deposits.
鈥淲hen there is a gold rush, you sell picks and shovels,鈥 Zgonnik said.
Most of the exploration happening today is in the U.S. and Australia, not just because there鈥檚 evidence hydrogen could exist underground but because of the two countries鈥 supportive regulatory environments. In the U.S., landowners have the rights to exploration permits rather than the state, a stark contrast to other countries where government-controlled licenses can result in long delays.
As a result of all these factors, many wildcatters are concentrated in Kansas and other states along the Midcontinent Rift. 鈥淚t鈥檚 expensive, and you can鈥檛 just go digging random holes in the ground,鈥 said Mark Gudiksen, a managing partner at venture firm Piva Capital, which invested in Koloma. 鈥淪o you have to be thoughtful about using all of the tricks of the trade.鈥
Even if prospectors hit hydrogen, its commercial prospects are highly uncertain. The reason green hydrogen produced by renewable energy hasn鈥檛 taken off yet is because of its high cost. The Department of Energy has set a goal for hydrogen producers and prospectors to get costs down to $1 per kilogram. That would unlock a wave of demand currently lacking but critical to growing the hydrogen industry.
The world currently uses about 94 million metric tons of hydrogen per year, according to BloombergNEF. The research firm forecasts that for the global economy to reach net-zero emissions by mid-century, hydrogen use will rise slowly, hitting 118 million metric tons in 2030, before entering a period of rapid growth. Worldwide use could reach 234 million metric tons in 2040 and 390 million metric tons in 2050, according to BNEF鈥檚 New Energy Outlook 2024.
鈥淭he market is really, really, really big if the unit economics work,鈥 said Mark Daly, head of technology and innovation at BloombergNEF. But that鈥檚 a big 鈥渋f.鈥
One critical cost factor: purity. The well in Mali is nearly 100% pure hydrogen. But hydrogen is often co-located with other gasses, including helium. Australian company Gold Hydrogen, for example, said it found hydrogen as well as high levels of helium in initial drill tests conducted in 2023 on South Australia鈥檚 Yorke Peninsula and is now working to drill its first new wells. While helium is a valuable product, separating the two gasses adds expense.
Host Seth Clevenger and Features Coordinator Mike Senatore take you behind the scenes to unveil the 2024 Top 50 Global Freight Companies. Tune in above or by going to .听听
One of the biggest complications to bringing down costs is transport, which involves compressing the gas into a liquid and trucking it or moving it through underground pipelines. Both are expensive and in the case of pipelines, closer to fantasy than reality. At high pressure, hydrogen can react with steel pipes, causing them to become brittle and crack.
There鈥檚 also the potential for hydrogen leakage, an issue that scientists and startups haven鈥檛 yet properly confronted.
Hydrogen 鈥渋s a very promiscuous gas. It diffuses all over the place,鈥 said Douglas Wicks, a program director at the Energy Department鈥檚 Advanced Research Projects Agency-Energy (ARPA鈥慐) who鈥檚 in charge of two geologic hydrogen research programs.
Transporting hydrogen makes sense economically within a 100-kilometer radius, said Daly. He pointed out that raising enough money to build a pipeline requires evidence that the resource it鈥檚 transporting will exist for 20 to 40 years.
Many startups exploring in Kansas and Nebraska could overcome transportation issues by selling it locally. The states are two top agricultural producers, and companies see farmers as their biggest potential customers. Hydrogen discovered in the region could be converted to ammonia, which is widely used to make fertilizer.
The myriad unknowns are not stopping wildcatters. They鈥檙e also not stopping venture capitalists and large corporate investors alike from placing big bets.
One of the industry鈥檚 biggest boosters is also one of the most influential climate tech investors in Breakthrough Energy Ventures.
鈥淭he discovery of geologic hydrogen could be one of the single most important events in our lifetimes, and perhaps the lifetimes of our children,鈥 said the firm鈥檚 technical lead Eric Toone in a speech at the Breakthrough Energy Summit in London in June. 鈥淚t offers the possibility of limitless zero-carbon reactive chemical energy.鈥
That鈥檚 part of the reason the firm participated in Koloma鈥檚 $245 million Series B round, making it one of the biggest startups on the hydrogen frontier. Still, investors acknowledge that the territory still comes with many unanswered questions, enough to give many others pause.
If Koloma succeeds, 鈥渢hat changes the cost structure of hydrogen,鈥 said Gudiksen. But he also sounded a cautionary note: 鈥淭here鈥檚 absolutely a chance we may lose all our money.鈥
听
听
